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Summary

Summarising the kinetic theory of the photographic process simple formulae of the characteristic
curve are derived, making use of special approximations that allow for elementary integration.
The influence of the distinguished parameters on formation of the characteristic curve is investi-
gated.

Pesiome

ObGobmaromas KuHeTHuecKas Teopus QoTorpaduueckoro mpomecca. BeiBemena ymnpomennas
Popmyna XapaKTepUCTUYECKON KPUBOI, MCIIONL3Ys CIENMAIbHYIO ANIPOKCHMAINIO, KOTOpas
M03BOJISAET dJIeMEeHTapHOe WMHTerpupoBanmne. llccienoBaHo BINMAHIE HEKOTOPBIX IApaMeTPOB
Ha (opMUpPOBAHNA XapaKTePHCTHUECKON KPUBOIi.

Zusammenfassung

Die kinetische Theorie des photographischen Prozesses wird kurzgefalt dargelegt. Die spezielle
Wahl von Funktionen, die die Approximation realer Zusammenhinge sind, erlaubt elementare
Integrationen mit dem Ergebnis analytischer Darstellungen der Schwirzungskurven. Anhand
dieser Formeln wird der EinfluB verschiedener Parameter auf die Form der Schwirzungskurve
untersucht.

In astrophysics, as commonly in many branches of experimental natural science,
photography is important for reception, storage, and transmission of information.
Although there have been appeared other modern means of detections radiation, it
should be emphasized that the photoemulsion is a suitable detector for electromagnetic
radiation in the optical region, possessing both an incomparably high storage density
of information and a relatively good resolving power. Moreover, in the archives of the
observatories lots of photographic plates are stored, having to be reduced with the
knowledge of the relation between exposure and photographic density. One should
emphasize that the photographic process is one of the most complicated one although
the photographic layer may be regarded as one of the oldest artifical radiation detec-
tors.

The reception of the information in the photographic layer by the photoelectrical effect
is followed by a series of consecutive photochemical processes. This leads to a montone
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functional relation between the photographic density and exposure. We base our
treatment mainly on the theories of GurNEY, MoTT and MITCHELL, as described in
detail in the monography by MEEs [1]. We refer to several publications by GERTH
(for referencis see below), where the kinetics of the speck transformation and the density
function have been treated.

In a following paper, the inverse function will be derived under certain restriction as
they result from astrophysical tasks.

1. Principal relations in the theory of the photographic process

In this chapter a short treatment of the kinetic theory of the photographic process
[2]is given, which serves as the basis for a derivation of the analytic function of the
characteristic curve.

The photographic layer is an emulsion of light-sensitive grains of silver halide and
gelatine. At first we consider a single silver halide grain. By action of the internal
photoelectric effect in the crystalline lattice N, free electrons (concentration c,) and N4
electron holes (concentration c¢,) are produced. This process may be described (simpli-
fied) by the coupled nonlinear differential equations

dN -

'd_te:"]E_‘xe'Ae_ﬁ'Ne'Nd: (1)
dnN

d—td:’)’]E—-(Xd'Nd—ﬁ'Ne'Nd, (2)

where 7 and E are the sensitivity coefficient of the photoelectric effect, and the intensity
of the incident light respectively. Further &, denotes the coefficient of the electron
traps, x4 denotes the traps of the holes, and g is the coefficient describing the recombina-
tion of the electrons and holes.

Starting from an initial state with N(0) = N4(0) = 0 a linear increase with time ¢
occours. After elapsing of a sufficient exposure time (¢ > 1073 s) a state of equilibrium
is reached, which is formulated by the equations

No( (l g, o - 1) Ny(oo) = ;ﬂ (]/1 I ﬂ E = 1). (3)

Caused by the charge action of the free electrons elementary silver atoms arise at
sensitivity specks of the crystal lattice representing special steps in the sequence of
growing specks, constituting a kinetic MARKOVIAN chain. The specks in the individual
kinetic steps have different physical and chemical properties, especially only specks
with 4 and more atoms are developable (an aggregate of 4 atoms in a spatial arrangement
represents a microcrystal of metallic silver). Different specks generated by a multi-step
kinetic reaction are contained in an exposed silver halid crystal.

The concentration of a definite specimen of a speck increases by accretion from the
neighbouring lower and upper steps whereas it decreases by dilution. The coefficients u;
of the build-up reactions (in direction from the lower to the upper steps) are proportional
to the electron concentration, u; = u;* - N.. The back reactions are caused by thermal
decay; the coefficients of these reactions are denoted by »;. So we have the balance
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equation for the ¢-th speck-step

dCi 3
W:Mi'ci—l_(ﬂi+1‘|"’i)'ci+7f’i+1'ci+1’ 1=0,1,...,M, 4)

or

d‘i .
%:Kij'cj’ Z:(); 1:"" M’ (53')

with
K;; = —(/li+1 + ), K, = Mis Kiiyn = %41, (5b)

all other, K;; = 0 (tridiagonal-matrix). The lowest speck-step is designate with 0 (i = 0),
so that ¢; = 0 yields for ¢ < 0. Thus we have y, = v, = 0, i.e., for ¢, thereisno growth
from lower steps and no reduction to lower steps.

The solution of the equation (4 or 5) with the initial conditions ¢;(0) at the time t = 0
is given by

ci(t) = By(E, t) - ¢;(0), ,7=0,1,..., M. (6)

As the action of the exposure the kinetic balance is shifted causing a redistribution of
the speck concentrations related to the steps. The analytic description of this process
is, that the initial vector ¢;(0) is transformed into the vector of the final distribution of
concentrations c;(t) described by the exposure matrix B;;, depending on the time ¢ and
the intensity function E(z) with 0 < v < t. In the special case B = const the functional
representation of the transformation matrix may be written in the form

B;, — efut, (7)

ij
Denoting the coefficient of developability of the i-th speck-stepw;, (wi<s = 0, wisy > 0),

we have the concentration of developable specks as the vector product w; - ¢i(f). The
number of developable specks a grain is

z2 = I’-wi~ci(t)= V-wi~Bij-cJ(0), (8)

wherin T is the light sensitive part of the grain volume. The probability of development
of a single grain is given after SVEDBERG (based on the Porssox law of distribution) by

w=1—¢e7?, (9)

which yields for the density of a thin emulsion layer with grains of uniform size and the
mean value of developable specks Z

8= 8- (1 — o). (10)

S denoting the density and S the saturation density of a thin layer. The light sensitive
volume V of a grain can be represented as a power function

V = a3 (11)

with @ being a characteristic lenght of the grains, and the exponent x takes into account
the shape of the grain and the absorption of the radiation. For » = 0 the sensitivity
is independent of the size of the grains (as in case of physical development), for = 2/3
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the sensitivity depends on the surface area of the grain, and for » = 1 we have a pro-
portionality of the sensitivity to the volume of the grain. Commonly x takes values bet-
ween 0 and 1. Taking into account the normalized distribution function of the grain
sizes w(a) we have to integrate the densities for all classes of grains over a. The contri-
bution of one grain to the density is proportional to the projected area, i.e., to the
square of the characteristic lenght. The mean projected area F is

F ~a? = fa2 - o(a) - da, (12)

0

which serves for the normalization. A further integration has to be performed over the
depth x of the layer with the total thickness x,. Because of the opacity D of the emulsion
layer and reflections at the boundaries the effective intensity is depthdependent, we
have

Eye(x) = E - ¢(x). (13)

Both integrations together yield the basic formula of the characteristic curve, containing
all influences of exposure, grain distribution, and transfer of radiation within the layer

Ty ©OC
§ = D a2 - w(a) - [1 — e V@wByEe@,0¢0] . dg da. (14)
a? - x,
0 0

2. Coneclusions from the theory of the photographic process

2.1. Schwarzschild’s law

Any theory of the photographic process has to be checked by the wellknown law of
blackening found by ScHWwWARzscHILD, which can be regarded as the most critical
criterion of its truth, as shwon by GerTH [3] in detail. Here we restrict ourselves to the
results.

SCHWARZSCHILDS law
E - tr = const (15)

describes for a definite constant and likewise for a definite density S a relation between
the intensity £ of the incident light and the exposure time . p is the SCHWARZSCHILD
exponent ranging in 0 < p <1 for long-time exposures (such as for astronomical
purposes). Hence the resultant density is not determined by the exposure energy (per
unit area) H = E - ¢, corresponding to the reciprocity law, but by some time-dependent
process, which diminishes the efficiency of the exposure with progress in time using
H = E - tv as the independent variable of the exposure-density function.

To demonstrate this assertion we go out of the basic formula for the density function
equation (14). All properties of the exposure related to the intensity and time are con-
tained in the exponent of the integrand, so we can confine in the following consideration
to this exponent, that means, to the mean number of developable specks on a grain.
Therefore, for constant density follows

w; - Bij(E - (), t) - ¢(0) = const (16)

which is termed as the universal exposure relation.
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In order to derive ScHWARZSCHILD’S law out of equation (16) we restrict ourselves to
the consideration of the very simple case, that in the emulsion before exposure only
specks of the order ¢« = 0 are contained; i.e., ¢, &= 0, ¢; = 0, ... (unsensibilized emul-
sion — or any single uniform step i < 3). Moreover, only specks of the order i = n
should be developable, i.e., w, = 1, w;+, = 0. Then, equation (16) is reduced to the
scalar relation

Bo(Eegs, t) = const. (17)

By means of further simplified but physically founded assumptions [3] one gets the
approximated value of By,

Buo(B, 1) = oy - N2E) - ™ = (0, - No(E) - t9)° = comst, p = - " (18)
Using equation (3) and inserting the abbreviation a = 48/xexq.,
[(]/1 + al — 1) ~tp]“ = const (19)

results. Herein ¢, is a function of other constants, and m is the number of steps with
back reactions (»; &= 0). If m = 0, then p = 1, i.e., any reciprocity failure does not
occur. The highest value of m is m = n yielding p = 0. This is the case for extreme low
exposure intensities, the density being independent of the exposure time, namely zero.
As mentioned above, the number of atoms contained in a developable speck must be
at least 4, since only a spatial arrangement of atoms constitutes microcrystals capable
to disturb the surface potential of the grain. In the case of a nonsensibilized emulsion
there are present on the grain only specks of the order zeroj; i.e., the surface of the crystal
contains no free silver atoms. Therefore, to reach developability the specks have to
transit 4 reaction steps. In the other case of a high sensibilized emulsion the grains are
occupied by specks of the order 3, i.e., the surface of the crystal contains coagulations
of 3 silver atoms constituting still no microcrystalline metallic silver and being not
developable. Since in real emulsions specks of different order exist, the magnitudes m
and n represent mean values from integers corresponding to the single kinetic steps.
So we have

0<p<it, since 0<m<n. (20)

Consequently, the value n is near unity for high sensitive emulsions, but near 4 for
emulsions of low sensitivity [4]. The exponent n is the universal effective step number,
introduced by E. GERTH, representing the reaction order of a multistep kinetic reaction
[5]. For low intensities with B < 1/a we obtain from equation (19) SCHWARZSCHILD’S
law (15). This intensities govern the so called Schwarzschild domain of exposure. On
the other hand, a ScHWARZSCHILD law comes out for high intensities with £ > 1/a
as applied at short-time exposures, with an SCHWARZSCHILD exponent p* = 2. p.
By this way values of the SCHWARZSCHILD exponent p* > 1 as found by Krox [6, 7]
become comprehensible.

In astronomic photography the exposure intensities are situated in the Schwarzschild
domain, so that for the exposure matrix yields

Buy(E, t) = Byo([E - tP]") = - (E - to)° (21)
(properly speaking Bys(K, t)) with the effective exposure energy
H=E-t (22)
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and
e= Wn-n-6(0) (23)
one obtains as the analytical representation of the charcteristic curve

(o5

Zo
S(H) = Suo - | 1 — = f 4 - () - e V@ . dg - da || (24)
- X
0o 0

a?

2.2. Characteristic functions derived under special assumptions

Explicite characteristic functions should be derived from equation (24). In this case some
properties of photographic emulsions, as for instance solarisation, are excluded. We

are interested in the application of photography in astrophysics rendering the derivation

given here sufficient. The fog should be taken into account by an additive term in the
exponent of the equation (24). This again gives an additive term of the density itself,

which can be determined seperately. Therefore, to evaluate the integral over a, the  cuvijv
functions of the grain-size distribution w(a) and of the sensitive volume are required.

The grain-size follows a lognormal distribution as found experimentally. A suitable
approximation of this distribution function is given by the difference of two exponential
functions,

w(a) =4 . (e—"“'a/1 —— e—“'al)i 1 _<_ 2 S 3: Ko > K9, (25)

possessing a nearly bell-shaped curvature for the parameters 2 = 3, x; = 1, ay = 16
related to the coordinate In a; A4 being a normalizing factor.
If we assume, that

Via) = at, (ie., i =3%), (26)

is in relatively good agreement with the reality, then the integration of equation (24)
over a proves to be very simple. We obtain

1 - dx
SH) =S |1 — — - ,  A=3, (27
) | e ) (e ) (=7)
1 1
SH) =S | L= o S —
f PRLE (1 +e-(H- (p)n/“Q)slz — a3 (1 +e-(H- (p)“/le)3/2 : g
(14 e« (H- @) /ae)™ - (L + & (H - ¢)"o) S

(28)
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These two functions for ¢(z) = 1, neglecting the opacity of the emulsion, would yield
the characteristic functions

1
SH) = Se |1 — , ,—3 29
= [ (L + e HYw) (1 +e- Hﬂ/az)] (29)
and
S(H) = Se |1 — 1 ) 222 - (1 + &+ HRop)3? — x32 - (1 + & - H"/ory)3/2
=8 “23/2 o cx13/2 0‘23/2 (1 +e- Hn/%)s/z . zx13/2(1 X gw H“/a1)3/2] s
A=2. (30)

If the extinction within the emulsion layer follows LAMBERT’S law
p(x) = e~ Do, (31)

then from (27) the characteristic function

_ Sw (1 + e+ Hoy) - (1 + & - Hn/wy)
Y = 3p {1“ (T e He ™) (1 + ¢ Hre ™)
X + (1 +e-Hrjxy) - (1 + - Hn - e70P/x,) .
R e e B (32)

can be drawn. On the other hand, starting from an incorrect but the results only weekly
influencing grain-size distribution,

w(@) = 4 - e (33)
which is obtained from (25) by «, — oo, we get the following simplified relations:
1 , .
S(H)—Sm(l—l_—}:?H—“/le)’ /‘~43, (p=1, (34)
1
H) = Se (1 — 5 =2, =1,
sty = 8 (1 = ) : o)

~&ln (1 + - H/oy)
T D (14 ¢e-Hr e ™P)xy)’

The integration of (28) inserting the functions (31) and (33) yields
1 [ 2 2

S(H)

i=3. (36)

T wD (1 + & Hojo)2 T (14 & Ho . e mDju))12 o

((1 4+ & Hn.emD/y)l/2 L 1). ((1 + & Hojx )12 — I)J} o
¢ ((1 4 & Hojoy)V2 1) ; ((1 +oe- Hn- e/, — 1) : R

The quantitative differences among the here presented characteristic curves (29), (30),
(32) and (34), ..., (37) are insignificant.

S(H) = Sa {1

(37)

2.3. General properties of the characteristic functions

Previously, from the relation (24) the principle properties, e.g., the limiting cases of
the characteristic function, could be demonstrated:

S(H) ~ 8o,  for  H>(V-e-g)7? (38)
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and
S(H) ~ S« - ay - H®, for HL(V-.e-p)t. (39)

Herein the constant is

a, = %f{ﬁ -ow(a) - V(a) - da - xifwn(x) dx. (40)
a 0
0 0

The derivative dS/dH is positive, (H == 0). On the contrary the second derivative is
-1 —

d2S/dH? < Ofor H < = —— (V- e gnytand d2S/dH? > Ofor H > "Ly g,
n

which leads to the conclusion, that in every case there must exist a point of inflection,
d2S/dH? = 0, H = H,. The shape of the characteristic curve is sigmoid as usually
observed in transition processes, see Fig. 1. Mostly the density function is represented
graphically with a decimal logarithmic scale of the abscissa, but we prefer the scale

X=mHH,=InH (41)

with the unit H, = 1. Such a representation, see Fig. 2, gives some attributes of the
function and the influence of the parameters in a better way. At the characteristic
curve four regions are distinguished:

1. the toe of the curve, presented by S = St H» = Sooat ™%,
2. the linear part with the inflection point in its center with the maximal gradient

Yz = Vxw
3. the shoulder and
4. the saturation.

In the commonly accepted representation S(X) the inflection points Syx lays at higher
amounts of density than in the likewise representation S(H) and because of the monotony
of the function at higher intensities, i.e., In H,, << X,,.

— 5/ Se

05

-— Inflection point

l ]
5 70
———— H
Fig. 1. Already a simple function as S(H) = ScH?/(1 + H?) shows the essential features of a

characteristic curve. The inflection point is located at Hy = V3/3 ~ 0.577, Sy = 1/4.
Near 0 (H < 1) the curve shows a parabolic shape, which is not to see here.
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X

Fig. 2. The same function as in Fig. 1 but plotted over X = In H shows the typical features of the
density curve with the different regions. The inflection point is shifted to higher density and
intensity values compared to Fig. 1, X, = 0, (related to H = 1), Sy, = 1/2.

The influence of the parameters contained in the function could easyly be derived by
means of the above presented formulae. The saturation density So constitutes the
scale of the density. The sensitivity coefficient @ = ¢/x; effects a parallel shift of the
curve in direction of the X-coordinate. On the other hand a acts on the scale of H. Apart
of this, it is obvoius that the reaction step number n causes either a contraction or
an expansion of the curve along the abscissa, changing the slope, dS/dX ~ n. The
grain-size scattering is characterized mainly by the ratio &« = &,/x, with « < 1. The
influence of « = 1/16 (a realistic value) is, compared with « = 0, insignificant. The
curve with o = 0 lays under the curve with x == 0, and the slope is a little flater. The
reason for this assertion is that for lower values o« more small grains are contained in the
emulsion contributing very little to the entire density. The opacity of the photolayer,
denoted by the parameter D > 0, affects the emulsion less sensitive with increasing
intensity (it is uneffected at H = 0).

One can say, the opacity flattens the curves. Especially for the simple case (36)

1
X,=—1Ina+ D2, i=3, (42)
n

the inflection point is shifted along the X-axis by —D/2, but S, maintains the same
density value:

1 1 1 + enbi2 1

1

_— pe 1 — = —— ————— e ‘., = . 43
5o Sy S S(Xy) ) In [T o =3 A=3 (43)
The inflection point gradient depends strongly on D,
1 1 1 emP2—1 1 n
i SN - R Wi st PO W . 44
Soo Y Xw Soo S (Xw) D e“D/2 + 1 S 2 YXw e 4 ( )
and tends to zero for high values D:

(45)

1 D—00
— 8 1/D.
S




264 EscuricH, K.-O.: Analytical representation of characteristic curve

At last we consider the influence of the parameter 1.
Therefore we compare the equations (34) and (35). Generally, Sy(X) > S3(X). The
inflection points are determined by

1 1 3 1
Xyo = = (ln i In ?) < Xy3 = oy Ina (46)
and
1 1
S—oo' Sy (X o) ~ 0,536 > g S3(XW3) = 0.5,
LK) = o 8 (Kag) = =~ 2 S 8 (X _32 s
Sco 3 w3) — B S 2 we) — (5/3)3/2~2’15 2( WJ)_W’”’VW

The characteristic curve in the case 2 = 2 lays above that for 2 = 3. This reflects the
fact, that only the developable specks on the surface of the grain are capable to reduce
the entire grain and therefore they will contribute to the density. The inflection point
has a higher value for 2 = 2 in comparison to 2 = 3, the gradient in this point, however,
is greater in the case 2 = 3. In this manner the loss of density is partly compensated
at higher intensities.

In this consideration a unique saturation density was presumed.

I would like to thank Dr. E. GERTH for discursions and useful clarifications of the theory.
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