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A simple approximation for the charaeteristic curve of photographic
emulsions and the evaluation of the parameters.
Part I1.
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Summary

Some usual approximation functions for the analytical representation of the characteristic curve
are presented, of which in particular a simple one is discussed, that warrants a high accuracy
in the linear range and the toe. A method to determine the function parameters is given, and the
correlation with GERTH’s step-order number is investigated.
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Zusammenfassung

Zur analytischen Darstellung der Schwéirzungskurve werden einige gebrduchliche Approxima-
tionsfunktionen vorgestellt und insbesondere eine einfache Funktion diskutiert, die eine hohe
Genauigkeit im linearen Bereich und im Durchhang gewihrleistet. Eine Methode zur Bestimmung
der Funktionsparameter wird angegeben und der Zusammenhang zur GErTHschen Keimordnungs-
zahl untersucht.

1. Introduetion

Depending on the special problem of application differently approximated or inter-
polated functions are customary used the photographic characteristic curve representing.
Hence it is not to be wondered that there are a lot of different functions and, likewise,
related methods for determination and evaluation of parameters, contained in the
formula.

The number of nodes and the accuracy required are of importance for the selection of
a suitable function. The efforts for calculation of the function and of the parameters
have become unessential by progress in computing techniques nowadays. In our case,
however, we need a simply calculable function restricting the expense of computing
time as much as possible. On the other hand, the number of parameters must be small
if there is available a small set of nodes (say 6 or 8) only. Anaccuracy of 3 per cent has to
be secured, apart from the range of the shoulder. It would be desirable to have at hand
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the explicite values for the characteristic curve as well as for its gradient at the point of
inflection. In principle, the density S depends on the effective exposure energy H in form
of 8 = S(H™). The exponent n here is a approximating parameter, which needs not to
be identical with GERTH’S step number n, (see part I). The density is to be calculated by
T =T, exp (—AS), where T' is the transmission. The fog has to be subtracted from all
density values so that S(0) = 0. The effective exposure energy comes out with the ex-
posure intensity I, the exposure time ¢, and the SCHWARZSCHILD exponent p as H = T - t?.
Occasionally, the logarithm X = In H of the effective exposure energy H is used for the
representation of the approximated density function. To construct approximation
functions for the characteristic curve, B. R. FRIEDEN (1985) has given an other method,
superimposing some orthogonal functions.

2. Simple approximation functions

At first we consider some commonly used approximation functions. Often a polynomial
optimization § = P,(H) is used for the approximation of curves on the base of a given
set of nodes. As general as this ansatz may be, so it has some unavoidable disadvantages.
In order to achieve the required accuracy, a satisfactorily high degree » of the polynomial
has to be chosen. Thus the deviations of the nodes H;, S;, ¢ = 1, ..., N might lead to
same sen§less function values. Thus, for instance, more flection points may occur than
that are expected. The value of » has to be fitted to the set of nodes with given accuracy.
In practice the required accuracy can usually not be achieved if only few nodes (N = 6
or 8) are available.

Better results can be obtained by means of spline-interpolation, however, for N = 6
the accuracy is not sufficient, too.

Using the results of the characteristic functions given in part I, and extending the poly-
nomial in the denominator to higher powers, we find

1
= B [1 1+ a,H" + a,H™ + a;,,H"”] ’ o

As a consequence S ~ S - a; - H® for § < Sw. Even a representation of the shoulder
range can be achieved by means of this function. If it is not possible to measure the
saturation density S directly, this value can only be obtained by means of approxima-
tion methods. The approximation procedure leads to unstable values for S, and for
the other parameters. The reproduced curves are very different from each other, which
may be produced already by a small deviation of only one node. The flection point has
to be localized by approximation. Likewise the inversion can be carried out by approx-
imation only. However, this entails essential difficulties for values § > 0.9 - Sw.

The parameters a,, d,, @, are to be determined by some preliminarily given values of the characteris-
tic curve, e.g. the inflexion point and the saturation density. With H = exp (X),0 = S,/(S, — 9)
and y = (dS/dX)/nS, it follows that

a, - exp (nX) + a, - exp (2nX) + a}- exp 3nX) =0 —1,

a, - exp (nX) + 2a, - exp (2nX) + 3a; - exp (3nX) = y - 02, (2)
a, - exp (nX) + 4a, - exp (2nX) + 92, - exp (3nX) = 2y%c® + ¢*(d>9/dX?)/S .

The coefficients ¢; may be derived from the values S, X, yxy» (0, ¥y) of the flection point
(d28/dX? = 0) as

ay = exp (—nXy) - [3(0y — 1) + 40,30y — 5/2)1,

ay = exp (—2nXy) - [—3(oy — 1) — 2440 *(Ywow — 2)1, (3)
a; = exp (—3nXy) - [(oy — 1) + yyo(ywon — 3/2)].
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Another phenomenological ansatz

J . m+1
(‘E:“.n.m_l.%_ij)_m, asd, m=0 4)
o — Ho
yields the characteristic function
(1 _SO/Soo) _ Soo _ SO "
S/Soozl——m, amH" = Soo———S ——-1, /ﬂl:f:O, (5)

with the asymptotical behaviour S =~ Sy + (S, — Sg) - & - H" for amH" << 1. For the
point of inflection, we have

n—1 S — Syi n -+ m JUm
— 00 w - s 6
B =T s =%, [n(m T 1)] (6)
ds n—11-n [ n+m JtHim
—| = als. =85 o focel T 7
dH |, * (8o — i) [m + n] [n(m+ 1)] (%
In case of m = 0, the ansatz (4) gives
8l8p =1—(1—8y/8,)exp (—aH"), m =0, (8)
with the relations for the flection point
n—1 Sy — Sen
n o e wH 1 1 9
oH, n S, — S, exp ( /7’& ) 9)
S 1—1/n
|, = s — 50 [T (10)

The range of § is in all cases Sy < S < Sw. The parameters « and n characterize the
‘toe’, and the remaining parameter m defines the position and the gradient of the flection
point, depending on each other. This representation of the characteristic curve proves to
be advantageous for the explicit representation of the values y, and H,, Syu; it ex-
cludes nonresonable curves. But it demands dnconsiderable effort to determine the
parameters. ’

Approximation functions of the form

IgH=a,+a,-S +a;-In (exp (b8Se) — 1) + a, - exp (bS®) (11)

have gained a wide spread (BECKER 1979, see further references there). It has been
pointed out that a sufficient approximation can often be achieved also without the last
term of equation (11). The determination of the parameters of the function (11) is more
complicated and takes more effort of calculation than our formula presented below and,
apart from this, it does not exist any explicit representation of the characteristic
values.

An other version of the characteristic functionfcomes out of the theory of the photo-
graphic process regarded to thin layers and uniform grain size, as an integrallogarithm
function. A series expansion yields

(H/Hy) | (H/Hy)?*  (H/Hy)?
SH) = 8y + Sn(H/H,)" - exp {n [— 1/' T + 591 3.3 ]} (12)

)
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This relation suggests the ansatz
S(H) = So + S(H|Hy)" exp (—nPr(H|Hy,)) (13)

with the polynomial P,, P,(0) = 0. A polynomial of the order » = 3 already renders a
sufficient fitting. However, for our problems we need the inverse characteristic function
H = H(S), the socalled exposure function, which will be discussed in the following
section.

3. Representation of a characteristic curve by approximation of an exposure function

The ansatz for the approximation of an exposure function

(S - Ago)

H™(8) =
m

exp {P.(S — Sy)} (14)
renders similarly good results as (11) and (13) do, except for the upper part of the shoul-
der and the saturation. The exponent » is assumed to be greater than zero, n > 0. The
accuracy required is achieved by a polynomial of the order » = 2. Hereby, an explicit
representation of the properties characterizing the curve is given, offering a criterion for

reasonable curves. Without any restriction, by putting S, = 0, we find our fundamental
formula

exp [b,S + b,82] = S - exp [by + 6,8 + 0257] (15)

N
H" —
B

Y
m

with by = —In S,,. We have S ~ S H" for H* < 1/S,,. Usually, § is represented as a
function of X, with

lenH:%(lnS+b0 + b8 + byS?) (16)

yielding S ~ S, exp (nX) = exp (nX — b,) for nX < 1. The gradient of the curve is

ds nS
Py =—_————— 17
X TAX T 1+ 0,8 & 26,52 S
The point of inflection has the coordinates

1 1 1 b

Spy= —, Xe=—|bo+=(1—In2b)+ —==]|, b,>0 (18)

V26, n 2 V26,
and the gradient is given by
Ywx - (19)

T b, 212,

The condition that y,, is a finite positive value leads to

§i > —212b,: (20)
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If, contrary to this, b, < —2 ]/2_1)2 , we have y,, < 0, and the gradient yy is indefinite at
both density values S;, S, with

S = { l/ - 81’2} (21)

In this case either the range 0 < 8 < S, (the ‘toe’) or the range S > i, (the ‘shoulder’)
is appropriate for approximation. If no point of inflection exists, e.g. by < 0, the gra-
dient y,(Sg) is indefinite for the particular density value Sg,

b, by) +, for b, >0,
Sk = 4(— b){livl blz} {—, for b, <O0. 2%

Thus, the approximation is applicable in the range 0 < S < Sg (toe), also. Examples of
these three cases are shown in Fig. 1. Except for the representation of the saturation we
economize one parameter. The parameter Sy, (or b,) contains the scales of the exposure
energy H and that of the density S (one parameter, because we renounced the saturation
density); the parameter n is determined by the form of the toe.?)

The parameter b, = 1/2S%, is determined by the density at the point of inflection,
whereas the gradient y,, f:gg}il“?:tj the parameter b; = n/yyy — 2/Syx.

=2 -7

— X
Fig. 1. The representation of the approximation function (16); a) be valid for a density function
in the case b, > 0 and b; > —272b,; b) the case b, > 0 but b, < —2 V2b,, limited to either

0 < 8 < 8, (toe) or 8 > S, (shoulder); c) the case b, << 0 — without flection point — suitable
only for 0 < 8§ < Sg (toe).

= T S—0
1) d§ n8 P T e
ax*  (L+ b8+ 208 7T ) Soe e e

For the curvature K of the curve we have
K04 28, K22 n%(85,28%), K(S.x)=0.
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4. Determination of the parameters

The approximation function may be written as

Sij-bj:n-Xi——lnSi, ?::1,...,1\7, j:O,1’2, (23)
where the index i labels the nodes X;, S; (X; = In H;). The coefficient matrix S;; of
the set of algebraic equations is

Sij - (Si)j’ 7:0, 1;2 (24)

The system is overdetermined (N > 3) and incompatible, i.e., the nodes X;, S; do not
coincide with the curve of the approximation function (15). Without loss of generality,
the nodes S; may be taken as accurate values, whereas the values X; deviate from the
values X;, arranged exactly on the curve, by 0X,. Therefore, the matrix S;; is fixed. The
deviations X, are adopted as randomly distributed according to a GAUssiAN function.
The best approximation is reached for the determination of the parameters by, b;, b,
and n by minimizing of the square norm M = 3} (6X;)? of the deviations (the method of
least squares). At first we assume the parameter n being provisionally known. For

w0X; = n(X; — X;) = nX; —InS; — Sy - b; (25)
the minimization of M by the parameter by (owing to M /db, = 0) leads to

agj - by = mX; —In S;) Sik, k,j=0,1,2, (26)
with the symmetric square matrix

ag; = Sik - Sij = 2 (Si)k+. (27)

1

This is Y)é well known Gauss transformation. The solution of the system of aigebraic
equations (26) is given by

by = (ay) ™t (nX; —InS;) Sik. (28)
The elements aj! of the inverse matrix of ax are

Aoy = (@yy - App — ais)| D, ayt = (@go - Az — a%l)/D’ a5 = (Ao * @11 — agy)/D,
ags = a5 = (Ao * 1 — afy)[D, as = daf' = (Qgy + Ay — Qo * Ay2)]D (29)

—1 -1 _
(gt = a9 = (Ayy * Q2 — Aoy - )| D
with the determinant D,
2 2 2
D = |ay| = oo - @1y * Agp + 2001 + Ay - Ayy — Qoo * WYy — Gy — Upy * Ay - (30)
An identical result follows by minimization of

M(n) = n*- M(n) = Y (n6Xy)?, (31)
with 76Xy, = In (1 + 6Hy/H )", being the deviation of the right hand side term of (23).
This term, in form of nX; — In S; = n(X; + éXi) — In S;, with nX; — In S; being as

the reproduced part. The deviation n0X; may be described by some kind of projection.
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The projection tensors

L= {Ln}, P=1I1-—L={Py,}={0m— L (32)
are defined by

L*=1L, P> =P, L-P=0 (33)

and the condition for symmetry, Liy, = Ly, Py, = Ppi. Using the equations (23) and
(28), we have

Lmi = ‘Svml : (alk)71 N ‘SYIZ;’ Z.y m = 15 L Av: ksl - O’ 1; 2: (34)
and
Lmi 5 Sin = Smn ) PmiSin = 0. <35)

The reproduced values X;, coinciding with the approximation function, are
— 1 .
Xi:Lim'Xm-%—;Pim'hlSm, (36)
consistj.ug of two parts being orthogonal vectors. The deviations are

- 1
6Xi = Pim U (Xm == ; In Sm)' (37)

We denote the P-projection of X, and In S, by 2, and s,
Ty = P - Xj, Sm = Ppi-InS;; (38)

22, s* are the square norms of them, and m = x, - s, is the scalar product of the two
vectors. Since for all characteristic curves 3} X, - In S, > 0, there must be m > 0.

o m
The square norm M of the values 0X; is a function of the parameter n:

M(n) = s? (—1— — ﬂ)2 + (x2 — 1:—2), (39)

n 52
having the minimum M ;, = a? — m?/s* = 0 at
n=mn" = sm. (40)

The square norm M (n) = n* - M(n) of noX; is

M(n) = a2 (n — %)2 + (82 — %2), (41)
with the minimum M,,;, = s? — m2/x? = 0 at

n = n¥ = mfa?. (42)
Since m > 0 and s2x? = 1712, it follows n* — n* = (s%* — m?)/ma? = 0 (equality exists

only in the case s, = n - @y, i.e. 0X, — 0 for all m = 1,..., N). The value n = n"
provides the best fitting for the quantities 0X,, = In (1 -+ 6H,, /H,,): on the other hand,

4%
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n = n* gives the best fitting for the quantity 20X, = In (1 + 0H/H,)* = In (H,/Hy,)",
because, in the case n = n" there is valid

Muin = M(n*) < M(n*) = M(n*)/n*2 = M py,/n*2, (43)
on the other hand, if n = n*, we have
My = M(n*) < M(n*) = n2M(n*) = 02 M, (44)

(and it follows n*? < n*2). The question arises, which of the two quantities, either n*
or n*, does give the better fitting to the step-order number n, introduced by GERTH
(see part I).

5. Determination of the step-order number

If the approximation function (15) should be usable for determination of the step-order
number 7y, then to reproduced the characteristic curves on principle accurately, this
function has i.e., the approximation functions has to coincide numerically with the
exposure function within the range. It has, therefore, to be assumed, that ¢X; vanishes
if X, S; takep the exact values.

The nodes X, S; are affected by the deviations 0.X;, 05;, again putting 4S; = 0 without
loss of generality. The deviations, 6X; or dH;, render the step-order number #n, to be in-
correct by on. Now we replace the values of the nodes X; by X; + 0X;, X; being the
‘true’ vajulles, and n by ng + on.

The supposition for the determination of the step-order number may be formulated
as: if 0X; = 0, then 0X; = 0 and on = 0. We have, generally,

Si = Ng = X4 (45)

and all the other relations derived from eq. (45), e.g. s* = n,? - 2%, or m = ny - 2% The
deviations 0X; change the curvature of the approximation function by

6X; = Lip - 6Xn, (46)
whereby the deviation of the nodes from the approximation function is
60X, = oy = Py - 0X,y. (47)

The square norm M of the last mentioned deviations is

M(on) = 8(a2) + 2u - oz (L) 4ot ( o )2, (48)

ng + On g + 0n

having the minimum

(49)

Myin = 6(%2) —ia? (x : 6x)2

x2

at the value n = n* (see (40)). For the deviation én* = n* — n, determined in this
manner, we have
on* x - ox

e (50)

Ny 2+ o
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The minimum of the square norm M (dn) of the deviations (n, -+ on) X; can be found
at n* = n, + on*, yielding

_M_*‘_ o(x?) + x - ox 51
ng x4+ 2x - 0x + 6(x%)° (51)

From the formulae (50), and (51), one can see that, as a rule, n* gives the better approxi-
mation to the step-order number n, than n* because on* ~ —x - dx/x? oscillaté around
zero for different sets of nodes, with z - dx being the mean value of the deviations dx;
weighted by z;. The deviation don* is less than on* by the positive definite value
~ 0(z?)[22, therefore, as a rule, on* would be less than zero. Consequently, n* tends to
too small values, which. has been widely corroborated by applications and numerical
experiments. Tt is no surprice that the minimizing of 26X ,, gives smaller values for n
then the minimizing of 6.Xp,.

If several characteristic curves have to be determined for uniform emulsions, we have a
common value n,. Than we can base the computation on a unifaue value for the para-
meter n. The simultaneous calculation of the different characteristic curves yields

nt = 4:] (sz)k/Zk‘ m, w*= Zk' mk/Zk‘ (@®)x (52)

where (s2)y, (22)y, my are the corresponding values s, 2%, m of the k-th single curve. The
values n*, n* determined in this manner are to be preferred to the mean values n*, n*.
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