

## **Electro Membrane Extraction (EME)**

A green, rapid, efficient, selective micro-extraction technique for clinical samples

Frederik A. Hansen, Postdoc

University of Oslo, Norway



Visit us at stand A1.409



### An introduction to Electro Membrane Extraction

- A microextraction technique derived from liquid-liquid extraction
  - electrophoresis across an oil membrane.
- Invented in 2006 (University of Oslo), to date ~400 scientific papers published.
- Now for the first time available to perform in commercial equipment by Extraction Technologies Norway (ETN AS, Ski, Norway).



UiO **Content of Pharmacy** 

University of Oslo

#### **From** Liquid-Liquid Extraction (LLE)

#### to Electro Membrane Extraction (EME)





- ✓ Fast (5-10 min)
- × 1-2 mL solvent
- × Not polar analytes
- × Evaporation prior to LC-MS

- × Slow (~60 min)
  - pH gradient
- ✓ 0.003-0.01 mL solvent
- × Not polar analytes
- ✓ Directly LC-MS compatible

- ✓ Fast (5-30 min)
  - Electric field driving force
- ✓ 0.003-0.01 mL solvent
- ✓ Polar analytes
- ✓ Directly LC-MS compatible

## Advantages of EME

- ✓ One-step sample preparation
- ✓ Compatible with very complex samples
  - Whole blood, serum/plasma, urine, cerebrospinal fluid, tissue samples
- $\checkmark$  Selectivity based on analyte charge and hydrophobicity = pure extracts
- ✓ Complete discrimination of proteins and phospholipids
- ✓ Non-destructive
- $\checkmark$  Green and safe chemistry



## **Equipment for EME**

#### Interested in learning more? Visit Hall A1 409

extraction technologies norway



## **Extraction preparation**



#### Steps:

- 1. Load ~300 µL sample and acceptor solutions into vials.
- 2. Place polypropylene membrane in leak-tight interface. Fasten acceptor vial in interface.



UiO **Contemport of Pharmacy** University of Oslo

## **Extraction preparation**



#### Steps:

- 1. Load  $\sim$ 300 µL sample and acceptor solutions into vials.
- 2. Place polypropylene membrane in leak-tight interface. Fasten acceptor vial in interface.
- 3. Load 10 µL EME solvent into membrane to prepare supported liquid membrane (SLM).



With solvent

## **Extraction preparation**

#### Steps:

- 4. Fasten sample vial in interface and place EME unit in shaker.
- 5. Close shaker lid, apply shaking and voltage.

















#### **Extraction**





Prototype

Ċ

Disassembly Cap acceptor vial Place in HPLC autosampler



#### Interested in learning more? Visit Hall A1 409

extraction technologies norway

University of Oslo

## Practical method development in Electro Membrane Extraction

University of Oslo

#### **Analyte considerations**

Charge and hydrophobicity



University of Oslo

#### **Considerations for EME solvent**

#### Good EME solvents are:

- Water immiscible
- Non-volatile
- Slightly conductive
- Selective based on analyte charge and hydrophobicity



For bases/cations with log P 2.5-6.0



## For acids/anions with log P 1-5



University of Oslo

#### **Considerations for EME solvent**

For bases/cations with log P 2.5-6.0





University of Oslo

#### **Considerations for EME solvent**

For bases/cations with log P < 2.5



Di(2-ethylhexyl) phosphate (DEHP)

University of Oslo

#### **Extraction conditions**



University of Oslo

#### Sample and acceptor solutions

- pH value is adjusted to favor analyte ionization
  - pH should be 2-3 units below/above analyte pKa (bases/acids)
- Biological samples are typically diluted 2-5 fold with buffer solution
- Sample pH: may require optimization
- Acceptor solution:
  - 20-100 mM pH modifier
  - MS compatible modifiers:
    - Formic or acetic acid (low pH) or ammonia (high pH)
  - Alternatively:
    - Hydrochloric acid (low pH) or sodium hydroxide (high pH)





University of Oslo

#### **Extraction voltage**

- EME is typically performed with 10-50 V applied voltage
- Optimization



#### **Online process monitoring by extraction current**

- Extraction current is a product of ions moving across SLM
- Analogous to HPLC pump pressure used for process monitoring





University of Oslo

#### **Extraction time**

• EME extraction are 5-30 minutes in duration, occasionally up to 60 minutes.



University of Oslo

### Hyphenation to LC-MS

- EME extracts can be injected directly on LC-MS instruments
  - $\rightarrow$  no need for evaporation + reconstitution
  - $\rightarrow$  clean extracts reduced matrix effects and down-time
- EME provides good method validation data and low variability.

Validation data for EME-LC-MS/MS determination of Atomoxetine from human plasma samples

| Linear range (nM) | R <sup>2</sup> | Recovery (%) | Intra-day<br>precision (%) | Inter-day<br>precision (%) | Accuracy (%) | Matrix effects (%) |
|-------------------|----------------|--------------|----------------------------|----------------------------|--------------|--------------------|
| 40-4000           | 0.9995         | 96%          | 1.7-3.0%                   | 3.0-5.0                    | 1.3-1.8%     | 101%               |

University of Oslo

#### Hyphenation to LC-MS

Extracts are free from proteins and phospholipids.



## Summary of method development practices

- Consider ionization and hydrophobicity of analyte(s)
- pH adjust sample and acceptor solutions
  - Acidic for basic analytes
  - Basic for acidic analytes
- Select appropriate SLM solvent for analytes
  - Optimization of transfer catalyst (DEHP) for polar analytes.
- Optimize extraction voltage (10-50 V) and time (5-30 min)
- Record extraction current for online process monitoring





E: %DEHP (% w/w) 20

University of Oslo

## Applications of Electro Membrane Extraction

UiO **Content of Pharmacy** 

University of Oslo

# Determination of 12 psychoactive substances in clinical samples

• EME vs routine LLE method at St. Olav University Hospital (Trondheim, Norway)

Procedure:

- 1. Sample: 100  $\mu L$  human serum added 25  $\mu L$  internal standard solution and 175  $\mu L$  20 mM formic acid
- 2. EME:
  - 10 µL NPOE as SLM
  - Acceptor solution: 20 mM formic acid
  - Extraction at 50 V for 15 minutes
- 3. Acceptor solution analyzed by UHPLC-MS/MS (3 min).

University of Oslo

# Determination of 12 psychoactive substances in clinical samples

 Comparison of EME and routine LLE method at St. Olav University Hospital (Trondheim, Norway)

Conclusions:

- EME method compliant to FDA validation guideline requirements
- EME performance matched routine LLE method
- EME simplifies sample preparation eliminating protein-precipitation, phospholipids removal, filtration, evaporation and reconstitution steps.



University of Oslo

#### **Extraction of pharmaceuticals from tissue samples**



**Electro Membrane Extraction** 

University of Oslo

Determination of anti-cancer agent and metabolite in rabbit tissue

**Extraction of pharmaceuticals from tissue samples** 

Procedure:

- 25 mg pulverized tissue added to 200 μL
  0.5 M formic acid + 12.5% methanol
- 2. EME:
  - DEHPi as SLM
  - Acceptor solution: 0.5 M acetic acid
  - Extracted at 15 V for 25 minutes
- 3. Acceptor solution analyzed by UHPLC-MS/MS

EME compared to reference LLE method



University of Oslo

#### **Extraction of pharmaceuticals from tissue samples**

Determination of anti-cancer agent and metabolite in rabbit tissue

Conclusions:

- EME required fewer steps of sample prep than LLE.
  - No benefit of additional homogenization for EME.
- Improved recovery, sensitivity and sample clean-up with EME.
  - Elimination of phospholipids with EME (unlike LLE).



## Summary



Electro Membrane Extraction (EME) offers green, rapid and selective extraction of clinical samples...

... but, EME has previously also been applied for many other extraction applications:

- Peptides
- Endogenous metabolites
- Metals and heavy metals
- Salt ions
- Preparative extractions
- Principally, any molecule with a charge can be extracted with EME!